martes, 20 de octubre de 2015

2.4 Transformaciones elementales por región. Escalonamiento de una matriz. Rango de una matriz.

Transformaciones elementales en las filas, Las fases de una matriz, Rango de una matriz
Si se intercambian dos filas cualesquiera de una matriz dada, llamamos a esta operación una operación de transformación elemental en las filas de una matriz. Se denota por R¬ij¬¬, lo cual implica que se intercambian las filas i y j de la matriz dada. Esta operación también se denota por R¬i¬ <→ R-j¬.

Un punto digno de notar es que esta operación no es de naturaleza singular. De hecho se ha demostrado, que todas las matrices no singulares son el resultado de la transformación elemental en la fila de una matriz . Si esto es cierto, entonces podemos concluir, que para todas las matrices no singulares también tenemos una matriz inversa, la cual tampoco es singular y es también el resultado de la transformación elemental en la fila de una matriz. Esta matriz elemental se denomina la matriz identidad I y tenemos el resultado A x I = A-1


En álgebra lineal, el rango de una matriz es el número máximo de columnas (filas respectivamente) que son linealmente independientes. El rango fila y el rango columna siempre son iguales: este número es llamado simplemente rango de A (prueba más abajo). Comúnmente se expresa como rg(A).
El número de columnas independientes de una matriz A de m filas y n columnas es igual a la dimensión del espacio columna de A. También la dimensión del espacio fila determina el rango. El rango de A será, por tanto, un número no negativo, menor o igual que el mínimo entre m y n:
A\in \mathcal{M}_{m\times n} \Rightarrow 0 \le \text{rang}(A) \le \min(m,n)

No hay comentarios:

Publicar un comentario